The first chapter explains the motivation for measuring rod function, in particular the rod's dynamic recovery from a substantial bleach which results in so-called 'rate limited' recovery of sensitivity. The physiological processes that underpin the replenishment of the rod photopigment are described and discussed, and explain the way in which rod function can act as a marker for retinal health. Overall, this chapter explains why rod function is worthy of further investigation.Then follows a description of the experimental methods used in the study of rod function, presented in later chapters. The psychophysical procedures are described and a new method of dark adaptation measurement is presented. The key feature of this technique is a red background.Nonlinear mathematical models are used to describe the reduction in visual thresholds with time following a bleach. Chapter three describes the difficulties associated with numerical methods of nonlinear regression and presents a novel, multi start algorithm that extracts the parameters of interest from a model that adequately describes dark adaptation in the healthy normal subject.Chapter 4 verifies the algorithm presented in chapter 3, which is shown to be reliable and robust. A series of numerical experiments are performed to evaluate some of the characteristics of the algorithm's performance.In chapter five, a series of experiments are presented to investigate the possible effect of a luminous background on dark adaptation (DA). The first experiment tests whether the rod system can detect a dim red background and the second, whether the rod thresh olds, when measured against light emitted by a red light emitting diode (LED), were linear. The third explores whether the background had any effect on the recovery of rod sensitivity. Finally, conventional contrast sensitivity is used to investigate the recovery from a photo bleach.A novel laboratory based apparatus was used to measure dark adaptation in a group of 36 subjects and the results of these measurements are presented in chapter six. The aim here was to see if the data collected were comparable with the dark adaptation data in the literature. These subjects were asked to make two visits so that an assessment of the test retest reliability of the method could be made. The method is shown to be reliable and capable of characterising the recovery of the visual system after a photo bleach.Although inherently flexible the analogue apparatus was prone to subject driven variability. Greater consistency of measurement was achieved using a digital device developed in partnership with an industry partner, Elektron (UK). This device, described in chapter seven provided fine control of many of the experimental parameters. It was used to measure the dark adaptation of a young healthy group of 21 people.This study uses new methodological approaches, both experimental and statistical, that are robust and reliable to facilitate investigation of rod function, and presents new findings about the early phase of rod sensitivity recovery.
Date of Award | 1 Aug 2013 |
---|
Original language | English |
---|
Awarding Institution | - The University of Manchester
|
---|
Supervisor | Ian Murray (Supervisor) & David Henson (Supervisor) |
---|
- Macular disease
- nonlinear regression
- rod mediated vision
- scotopic vision
- dark adaptation
- rod photoreceptor
Isolating Rod Function in the Human Eye
Kelly, J. (Author). 1 Aug 2013
Student thesis: Phd