Structural integrity assessment of nuclear components assessed using the R6 Failure Assessment Diagram approach requires an understanding of the limiting condition in terms of both fracture and plastic collapse. For ductile materials, such as stainless steels used for nuclear components, including the primary pipe-work of a Pressurised Water Reactor (PWR), the limiting condition defined by plastic collapse is likely to occur prior to the initiation of fracture. This is due to the relatively low yield stress of the material and the high fracture toughness. If this is the case, structural integrity may be solely assessed on plastic collapse criteria, with little or no reference to fracture toughness; thus considerably simplifying the assessment procedure, whilst maintaining the integrity of the plant. Nevertheless, an in-depth understanding of fracture under plastic collapse conditions is required to make a robust case for single parameter assessments based on a plastic collapse criterion alone.The challenge in this project lay in understanding and predicting ductile fracture initiation under large-scale yielding conditions, i.e. outside the normal validity limits of conventional elastic-plastic fracture mechanics as plastic collapse conditions are achieved. The approach developed in this research has explored three fracture assessment methods: (a) two parameter fracture mechanics based on the J-integral and a refined Q-parameter calculated closer to the crack-tip under widespread plasticity than is conventionally the case, (b) two local approach methods based on critical void growth ratio defined by Rice and Tracey, and (c) a local approach method based on the critical work of fracture. All three methodologies were found to adequately describe failure across a range of constraint conditions.The fracture toughness constraint dependence of 304(L) stainless steel was studied experimentally and analytically. Significant constraint loss was shown to occur in nominally high constraint fracture toughness specimens due to extensive plastic deformation at fracture initiation. Furthermore, significant fracture toughness constraint dependence was observed experimentally. An analytical method using local approach criteria was developed to predict high constraint fracture toughness, required for structural integrity assessments, and to quantify the constraint dependence fracture toughness as a function of two parameter fracture mechanics based on the J-integral and the refined Q-parameter.The influence of constraint on the prediction of failure in a stainless steel pipe containing a fully circumferential crack of various depths was investigated analytically for a range of loading conditions. A refined constraint independent failure assessment methodology was developed using local approach analyses. Using this methodology, the pipe component was shown to consistently fail by plastic collapse irrespective of the crack depth or loading condition. The conservatism of the conventional structural integrity assessment was quantified and shown to vary with crack depth and with loading conditions.This research has suggested that failure in a 304(L) stainless steel pipe will be by plastic collapse prior to ductile initiation for a limited range of defects and loading conditions. Further analytical studies and experimental work will be required to demonstrate whether this observation is general for a wider range of defects and loading conditions.
Date of Award | 31 Dec 2013 |
---|
Original language | English |
---|
Awarding Institution | - The University of Manchester
|
---|
Supervisor | Andrew Sherry (Supervisor) |
---|
- Finite Element Analysis
- 304 Stainless Steel
- local approach
- fracture mechanics
- ductile fracture
- constraint dependant fracture toughness
New insights into the competition between ductile tearing and plastic collapse in 304(L) stainless steel components
Wasylyk, A. (Author). 31 Dec 2013
Student thesis: Phd