Novel interfacial adsorption properties of collagenous polypeptides and their interactions with model surfactants.

  • Maria Angeles Rodriguez Rius

Student thesis: Phd


Abstract. Maria Angeles Rodriguez Rius. Doctor of Philosophy. The University of Manchester, 2012. "Novel interfacial adsorption properties of collagenous polypeptides and their interactions with model surfactants".The interfacial adsorption and bulk properties of a collagenous polypeptide derived from chicken eggshell membranes, the 40 KDa polypeptide, and its mixtures with common low molecular weight (LMW) surfactants, SDS, DTAB and C10E8, have been studied for the first time using surface tension, ζ-potential, foam observations and neutron scattering techniques. The biopolymer has been shown to act as an effective biosurfactant by lowering the surface tension of water below the values commonly achieved with conventional LMW surfactants, i.e. γ = 32 ± 1 mN/m. This capability is maximized at its isoelectric point, pH ~5, and addition of NaCl does not have a major impact upon adsorption. On its own, the 40 KDa polypeptide lacks the ability to foam. When mixed with cationic and anionic surfactants, a positive synergy is observed at low concentrations of both materials that exceeds the expectations from the individual components due to the formation of polypeptide/surfactant complexes with high surface activity and high ability to foam and foam stability. At these concentrations, maximum interfacial adsorption is achieved. The synergy is observed in spite of the type of charges present in the surfactant polar head. However, under the conditions studied, there is a difference in behaviour in regards to colloidal stability and surface film formation between the mixed solutions with the anionic SDS and the cationic DTAB. The non-existence of the synergy in the surface adsorption profile of the mixtures of the polypeptide with the non-ionic surfactant C10E8, as obtained via the plate method, suggests that electrostatic interactions are necessary for this strong synergy to act. ζ-potential has been used to prove the electrostatic nature of the synergy. Specular neutron reflection and SANS measurements offered an insight into the complex size and structure. The 40 KDa polypeptide thus offers a promising alternative to the use of high amounts of LMW surfactants in a range of products in which low surface tension and/or high and stable volumes of foams are needed, by combining small amounts of polypeptide and an ionic surfactant. This could be exploited by industries which have an interest in nanoparticle formation such as personal care or pharmaceutical companies. However, further work is needed to fully characterize these interactions.
Date of Award1 Aug 2013
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorJian Lu (Supervisor)


  • foam
  • collagen
  • peptide
  • protein
  • strongly interacting
  • biopolymer
  • surface tension
  • zeta potential
  • complex
  • surfactant
  • neutron
  • polymer

Cite this