• Khairunnisa Nabilah Haji Ruslan

Student thesis: Phd


Hydrogels aim to mimic the natural living environment by entrapping large amount of water or biological fluids in their polymeric network. There has been growing interest in the development of peptide and protein hydrogels, due to their improved biocompatibility, biodegradability and biological properties in comparison to purely synthetic polymer hydrogels. Under the appropriate conditions, biomacromolecular protein hydrogels can self-assemble into ordered meso- to macroscopic supramolecules with better resulting networks that promote tissue development. The work presented here mainly focuses on producing protein hydrogels with controlled physical properties useful for tissue regeneration process and drug delivery applications. Hen egg white lysozyme (HEWL) hydrogels were studied in the presence of water and different reducing agents forming three HEWL systems including HEWL/water, HEWL/DTT and HEWL/TCEP gels. Strong, self-supporting HEWL gels were successfully prepared in the range of pH 2 to 7, using a temperature of 85°C. At pH 2, the protein denaturation in water was relatively slow resulting in a high percentage of turn structure (~50%) that promotes HEWL gelation after 3 days of heating. No lysozyme gelation in water was observed at pH 3, 4 and 7 even after 21 days of heating. A small quantity of DTT (~20 mM) was added to encourage lysozyme unfolding and HEWL/DTT samples formed gels at higher pH including at physiological pH. The pH 2 HEWL/water gel was found to be stronger but more brittle than pH 7 HEWL/DTT gel. It was observed there were some irregularities in the distribution of pH 2 fibrils (~7µm in length) that form large pore sizes within the network. The pH 7 sample contained shorter and stiff fibrils with repetitive polygon-shaped mesh network. The use of TCEP, which is a stronger reductant than DTT, led to the formation of self-supporting HEWL gels between pH 3.5 and 5.5. The highest storage modulus was observed at pH 5, which is related to the high β-sheet content of the sample (~45%). In addition, a promising strategy has been devised to form thermoresponsive HEWL hydrogels by synthesising and incorporating a small fraction of lysozyme-PNIPAAm bioconjugates into the major protein matrix. Results show the thermoresponsive nature of PNIPAAm was conferred to HEWL protein that exhibits higher storage stability in response to changing temperature.
Date of Award1 Aug 2015
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorAline Saiani (Supervisor)


  • Hydrogels, Protein Hydrogels, HEWL, HEWL-PNIPAAm, Tissue Engineering, Scaffolds

Cite this