Protein Kinase Involvement in Wild-Type and Mutant Calcium-Sensing Receptor Signalling

  • Mohd Ezuan Bin Khayat

    Student thesis: Unknown


    The calcium-sensing receptor (CaR) is a G-protein coupled receptor that controls mammalian extracellular calcium (Ca2+o) homeostasis. CaR downstream signalling involves intracellular calcium (Ca2+i) mobilisation which can be negatively modulated by protein kinase C (PKC)-mediated phosphorylation of CaR residue Thr-888 (CaRT888). The nature of this regulation was investigated here using siRNA-based knockdown of individual PKC isotypes. Knocking down PKCalpha expression increased CaR-induced Ca2+i mobilisation in CaR-HEK cells, significantly lowering the EC50 for Ca2+o relative to control siRNA-transfected cells. In accordance, PKCalpha knockdown also decreased CaRT888 phosphorylation which also permitted the triggering of Ca2+i mobilisation in CaR-HEK cells at sub-threshold Ca2+o concentrations. Interestingly, PKCĪµ knockdown attenuated CaR-induced Ca2+i mobilisation in CaR-HEK cells, significantly increasing the EC50 for Ca2+o. However, this knockdown was also also found to inhibit CaRT888 phosphorylation and this is the first time that CaRT888 phosphorylation has been shown to be dissociate from Ca2+i mobilisation. The results show the complexity of the interactions that potentially underlie the CaR's pleiotropic signalling and provides novel targets for examining signal bias.Classically an increase in cAMP is known to trigger PTH seceretion. The observation in this study shows that raising intracellular cAMP levels with forskolin also decreased CaRT888 phosphorylation permitting increased Ca2+i mobilisation. This suggests that cAMP may stimulate the phosphatase (most likely protein phosphatase 2A (PP2A)). Nevertheless, knocking down Galpha12, which has been shown to activate PP2A, resulted in increased CaRT888 phosphorylation and lower Ca2+i mobilisation (increased EC50 for Ca2+o). This suggests the possibility of CaR as a cAMP sensor that can detect an increase in intracellular cAMP in order to stop PTH serection.Three novel CaR effectors, P70 ribosamal protein S6 kinase, insulin-like growth factor receptor-1 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, were identified in CaR-HEK cells. It was shown that a) high Ca2+o stimulated the activation of these effectors and b) each effector was inhibited by knockdown of PKCalpha and Galpha12, which further confirmed the association of these signals with CaR. These data show that CaR also plays an important role outside Ca2+o homeostasis, such as growth and inflammation. Finally, five CaR mutations associated with autosomal dominant hypocalcaemia (ADH) were found to increase Ca2+o-induced Ca2+i mobilisation, as well as ERK and p38MAPK activation, when transfected stably in HEK-293 cells. Cotreatment with the calcilytic NPSP795 inhibited ERK and p38MAPK phosphorylation in all 5 gain-of-function mutants and in the wild type CaR cells, with IC50s for the compound in the nanomolar range. These data highlight the potential utility of CaR negative allosteric modulators in the treatment of gain-of-function CaR mutations. Together these data enhance our understanding of CaRT888 phosphorylation and CaR signalling.
    Date of Award1 Aug 2016
    Original languageEnglish
    Awarding Institution
    • The University of Manchester
    SupervisorDonald Ward (Supervisor) & Jason Bruce (Supervisor)


    • Calcium Sensing Receptor, PKC isotypes, CaRT888, Ga12, cAMP, and p70 S6Kinase , I?Ba, IGF1R, ADH

    Cite this