Steps Toward A Through Process Microstructural Model For The Production Of Aluminium Sheet

Student thesis: Phd


Aluminium sheet production is a multi-stage process in which altering processing conditions can drastically alter the size and type of second phase particles found in the final product. The properties of these second phase particles also affects deformation and annealing processes, meaning that any attempt to create a through process model would require the ability to predict both how the particles would develop in the material, and how these particles then affect the alloy moving forward.This project first focuses on gaining insight into how the particles in a model aluminium alloy change during homogenisation heat treatment and hot rolling. This has been accomplished by utilising serial block face scanning electron microscopy (SBF-SEM), a technique which allows the capture of 3D data sets at sub micron resolutions. This has allowed the populations of primary (constituent) and secondary (dispersoid) particles to be analysed at different stages of sheet production, and thus allowing the effects of homogenisation and hot rolling on particle populations to be quantified.To discover how the particles would go on to affect further processing, digital image correlation has been used to examine the localised strain in the alloy near to a selection of particle configurations. This highlighted the heterogeneity in slip behaviour within the alloy and illustrated that plumes of rotation develop near to non deformable regions. Rotation plumes have previously been modelled using a crystal plasticity model, and so further work is also presented expanding upon this model to simulate a variety of particle configurations. This has shown that in the case of single particles, local deformation is dependent on both the aspect ratio of the particle and how it is aligned to the active slip system. With the incorporation of a second particle, the interparticle spacing must also be considered.
Date of Award1 Aug 2016
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorJoseph Robson (Supervisor), Philip Prangnell (Supervisor) & Joao Quinta Da Fonseca (Supervisor)


  • Digital Image Correlation
  • Homogenisation
  • Aluminium
  • Crystal Plasticity Finite Element Modelling
  • Serial Block Face Scanning Electron Microscopy

Cite this