UNDERSTANDING THE INTRACELLULAR REGULATION OF INTERLEUKIN-1

  • Joseph Ainscough

    Student thesis: Phd

    Abstract

    Interleukin (IL)-1alpha and IL-1β are pivotal to the initiation and orchestration of inflammation. Unlike most cytokines, IL-1 does not have a signal peptide and therefore secretion requires 2 independent processes; an initial signal to induce the up-regulation of the inactive precursor (pro-IL-1) and a second signal to drive cleavage and subsequent secretion. Whereas many previous studies have focused on the mechanisms that drive IL-1 secretion, the aims of this thesis were to investigate the processes that regulate the intracellular precursors of IL-1 (pro-IL-1alpha and pro-IL-1β). The hypothesis here was that regulation of these precursors may serve to control the vigour of IL-1 secretion and, ultimately, may influence the potency of pro-inflammatory responses.Post-translational modifications were of particular interest in this thesis, as these modifications are becoming increasingly important to immune system function. Ubiquitination is an important post-translational modification whereby ubiquitin, an 8.5kDa protein, is covalently bound to lysine residues on substrate proteins. In chapter 2, evidence was provided to show that in murine DC, IL-1alpha and IL-1β are polyubiquitinated and that, in both DC and macrophages, this polyubiquitination drives the proteasomal degradation of IL-1. In addition, these data demonstrated that in the presence of a second signal, polyubiquitinated IL-1 is still available for secretion. Overall, these investigations highlight that the polyubiquitination and proteasomal degradation of IL-1 serves as an essential process in the regulation of IL-1 and, therefore, should be considered as an extra dimension to the current two-signal paradigm of IL-1 release. To support this work, an immortalized bone marrow derived murine macrophage cell line and a human monocyte cell line that both stably express fluorescent IL-1β were employed to measure the rate of IL-1β degradation. In these investigations, it was shown that fluorescence is a reliable readout for measuring IL-1β degradation in these cell lines. In addition, it was demonstrated that that TLR-stimulation leads to an inhibition in IL-1β ubiquitination and degradation. Together, the work presented herein highlights that ubiquitination actively regulates the vigour of IL-1β protein expression and thus may be an important regulator of inflammation. To complement this work, a broader approach was taken, whereby the interactome of pro-IL-1β was explored using a human protein microarray. In these investigations, a human proteome microarray containing 19,951 unique proteins was used to identify proteins that bind human recombinant pro-IL-1β. In these analyses, calmodulin was identified as a particularly strong hit, with a SNR of ~11. Using an ELISA-based protein-binding assay, the interaction of recombinant calmodulin with pro-IL-1β, but not mature IL-1β, was confirmed and shown to be calcium dependent. Finally, using small molecule inhibitors it was demonstrated that both calcium and calmodulin were required for nigericin induced IL-1β secretion in human monocytes. Collectively, the evidence presented in these investigations suggests that following calcium influx, pro-IL-1β interacts with intracellular calmodulin and that this interaction is central for IL-1β processing and release. In addition, a number of other potentially important pro-IL-1β-interacting proteins were also identified in this work, including IL22RA2 and PLCXD3. Overall, the work presented in this thesis serves to highlight that IL-1 is regulated by a broad range of potentially important intracellular processes. We postulate that these processes may be pivotal in the regulation of inflammation and thus the maintenance of homeostasis.
    Date of Award31 Dec 2015
    Original languageEnglish
    Awarding Institution
    • The University of Manchester
    SupervisorIan Kimber (Supervisor) & Rebecca Dearman (Supervisor)

    Keywords

    • IL-1
    • intracellular

    Cite this

    '